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Pref ace

This investigation determines an analytic solution to the

force acting on a current loop over a non-uniform expanse of

the geomagnetic field. Since the geomagnetic field contains

energy and that energy is being used to make attitude

adjustments to satellites, it should be possible to use that

field energy as a sort of action-at-a-distance space

thruster. Although the derivations for the force used a

number of simplifying assumptions, the techniques developed

are still applicable to a more detailed analytic solution for

the force available through the interaction of a current loop

and the geomagnetic field.

I am deeply indebted to my thesis advisor, Lt Col Howard

Evans, first, for the idea itself, and also, for his

continued support and encouragement during the months of

contemplation, analysis, evaluation, and writing that this

effort represents. Without his superb instructional

abilities and insights into the phenomenology of physics,

this thesis would not have been completed.

In addition, I would like to recognize my wife Olivia for

her understanding and patience throughout my tenure at AFIT

and particularly during this thesis effort when the work week 0r

seemed to alway,.. extend well into the weekend.
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Abstract

This study determines analytic solutions to the

interactive net force between the dipole created by a current

loop and a non-uniform expanse of the geomagnetic field. A

simple dipole approximation is used for the geomagnetic field

and it is assumed that the current loop can be maintained in

any desired orientation. Analytic solutions are found for

four different orientations: the current loop parallel to

the earth's surface, the current loop perpendicular to the

earth's surface, the current loop dipole parallel to the

instantaneous geomagnetic field, and an inertial orientation.

A hypothetical satellite-current loop system is discussed and

the action-at-a-distance magnetic interaction force is

compared to aerodynamic drag and solar radiation pressure.

The magnetic force is also compared to the force that some

space thrusters produce. In terms of lifetime impulse or

total impulse deliverable over one orbit, the magnetic force

compares favorably to many thrusters in use today or under

consideration.

xi



GEOMAGNETIC FIELD ENERGY

AS A SOURCE OF THRUST

I. INTRODUCTION

Background

To accomplish their Department of Defense, scientific, or

civil missions, satellites must periodically make attitude

adjustments, compensate for orbital perturbations, or

maneuver to different orbits. One constraint on their

ability to accomplish these tasks, essentially a constraint

on their lifetime, is the amount of fuel that can be carried

on board. Systems currently in use include conventional

chemical rockets, cold gas jets, and, in a few situations,

electric propulsion. Once the fuel supply for these

activities is exhausted, the satellites cease to be useful

and become expensive orbiting junk. An energy source is

needed that does not require the carriage of an on-board fuel

supply.

The earth is surrounded by a magnetic field; this field

contains energy (B2 /2po). By taking advantage of this

energy, the amount of on-board fuel consumed by a satellite

can be reduced and the lifetime increased. While magnetic

torques have been used to adjust satellite attitude (Eller,

1983:315; Kaplan, 1976:196), there has been no attempt to use
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the energy contained in the geomagnetic field to change the

satellite's orbital elements. Regardless of the means used

in moving a satellite, all require an exchange of momentum

between an energy source and the space vehicle.

Traditionally, any changes to a satellite's orbit have

required the use of thrusters and a limited supply of

reaction mass. Since no reaction mass will be used in this

proposed system, the momentum exchange will take place

between the earth and the satellite through the interaction

of their respective magnetic fields.

Statement of Purpose

This thesis will analyze the interaction between a

magnetic dipole field generated by a current loop around an

artificial satellite and a non-uniform expanse of the

geomagnetic field. Specifically, it is to quantify the net

force available through the interaction of the two fields.

This action-at-a-distance force will then be compared to two

orbit degradation perturbative forces: atmospheric drag and

solar radiation pressure. A comparison will also be made to

representative space thrusters currently in use or under

consideration. In addition, the force will be evaluated in

terms of its potential capability to make minor orbit

alterations.
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Scope

It is known that satellite attitude and spin rate can be

changed by the earth's magnetic field as a result of the

torque a magnetic dipole experiences in a uniform magnetic

field. This thesis will look at the net force available to

act on a satellite in a non-unifor external magnetic field

and the possibility of maintaining an artificial satellite's

orbital characteristics using geomagnetic field energy in the

face of natural decay process or to make minor adjustments to

the orbital elements of an artificial satellite.

This research will entail a determination or analysis of:

-The characteristics of the earth's magnetic field
-The interaction between a magnetic dipole and a
uniform magnetic field

-The interaction between a magnetic dipole and a non-
uniform magnetic field

--Specifically the net force on a satellite - as
a result of a large rigid current loop about
the satellite - in the earth's magnetic field

-The effect on a satellite's orbit by the application
of such a force

To achieve this, certain assumptions and limitations must

be established:

-The system starts out in a stable orbit
--Only polar orbits will be considered in the
derivations

-A non-rotating earth
-The geomagnetic field changes at a predictable rate
-The current carrying loop about the satellite is
rigid

-Power requirements can be met
--No specific hardware will be designed

-The current carrying loop can always be maintained
in a given orientation relative to the geomagnetic
field

3



II. LITERATURE REVIEW

A literature search and review are necessary to resolve

several preliminary and fundamental knowledge requirements

for this thesis. The four primary categories of search and

review are orbital mechanics, magnetostatics, the structure

of the geomagnetic field, and present usages of the

geomagnetic field.

The topics of orbital mechanics and magnetostatics are

well developed and thoroughly covered in textbooks. The

specific area of interest in orbital mechanics is the change

that takes place in a satellite's orbit by the continuous

application of a very small force--rather than the single

impulse approximation used with conventional chemical

rockets. Small, non impulsive forces are generally dealt

with through perturbative techniques. One such technique,

with application to this thesis and presented in Appendix A,

is Euler's Variation of Parameters.

Within magnetostatics, several preliminary problems need

to be understood prior to attempting the computations for

this thesis. These are:

-The magnetic dipole generated by a current loop
-The interaction between a magnetic dipole and a
iform magnetic field

-The interaction between a magnetic dipole and a non-
uniform magnetic field
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The first is covered in most undergraduate textbooks on

general physics. The second is covered in textbooks dealing

with electromagnetic theory and represents the mathematical

concept behind the use of magnetic torques for satellite

attitude adjustment (Kaplan, 1976:196f). The last problem is

not often addressed but when addressed it is in terms of

microscopic particles.

The third category of search and review is the requirement

to find an acceptable model of the geomagnetic field. This

model will be integrated into the problem of the interaction

between a magnetic dipole and a non-uniform magnetic field.

The final area of review is the current use of the

geomagnetic field for satellite attitude adjustment. Several

related areas that will not be investigated due to

simplifying assumptions, but would be necessary for a

practical engineering design resolution to the thesis

question, include satellite power supply, structural design

requirements, satellite attitude stabilization schemes, and

launcher constraints.

Orbital Mechanics

Since the action-at-a-distance force that may be derived

from the interaction of the satellite magnetic dipole field

and the geomagnetic field will be small, the application of

the force must be maintained for finite periods and

preferably in the most intense region of the geomagnetic
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field as possible. This non-impulsive application of force

suggests a similarity to low-thrust systems such as ion

propulsion (Stuhlinger, 1964:84,89). Low thrust problems

must be analyzed using a perturbation approach such as

Cowell's, Encke's, or Variation of Parameters (Bate and

others, 1971:425). While the optimum impulsive thrust

transfer between two coplanar circular orbits is a Hohmann

transfer, the optimum infinitesimal thrust transfer is a

spiral. Close to the earth the gravitational acceleration is

much larger than the thrust acceleration and the spiral will

be very tight. A graphic comparison of a Hohmann transfer

and a low-thrust transfer is shown in Figure 1.

a)b

Figure 1. Comparison of a Hohmann Transfer Between Circular
Orbits (a) and a Low-Thrust Spiral Transfer Using
Infinitesimal Thrust (b)
(Adapted from Edelbaum:117)
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Over time the acceleration effects accumulate and the

orbit expands more quickly. A general assumption in low-

thrust transfer maneuvers is an acceleration that is

approximately constant in magnitude and tangential in

direction. A review of known solutions to some trajectory

optimization problems using impulsive thrust shows that the

same orbital transfers are possible using infinitesimal

thrust (Edelbaum, 1966:113).

Magnetostatics

Unlike electrostatics, which can point to a unit charge as

its fundamental building block, magnetostatics has no

magnetic "monopole" that fulfills the same role (Cheston,

1964:149). The fundamental magnetic material is the "motion

of charges" (Dart, 1966:66). The motion of electric charges

produces a magnetic field. The magnetic field intensity--

often referred to as magnetic induction--is a vector field

having both direction and magnitude. It is proportional to

the current and inversely proportional to the distance from

the current (Dart, 1966:68).

When a current is introduced into a magnetic field, there

is an interaction. This interaction is felt as a force at

right angles to both the current and the field. The

magnitude of the force is the product of the external

magnetic field intensity and the current (Halliday & Resnick,

1970:559). Figure 2 shows the orientation between the
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magnetic field, current, and direction of the force, using

the right-hand rule.

If the current forms a circular loop, the magnetic field

generated is the same field that would be generated by a

magnetic dipole oriented perpendicular to the plane of the

circular loop (Halliday & Resnick, 1970:571). If the

current-carrying loop is introduced into an external uniform

magnetic field, it will experience zero net force and hence

no displacement. However, if the dipole moment of the loop

is at an angle (0) to the direction of the external magnetic

field, there is a net torque; and the loop will rotate if

free to do so as shown in Figure 3. (Halliday & Resnick,

1970:543).

FORCE

CURRENT

MAGNETIC FIELD

Figure 2. Relative Direction of Magnetic Field, Current &
Force
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(a) (b)

Figure 3. Forces on a Current Loop in a Uniform Magnetic
Field (Adapted from Halliday & Resnick:542)

The limited discussion encountered in the literature of a

magnetic dipole in a non-uniform magnetic field provided a

generalized equation for the force on a localized current

distribution in a slowly varying external magnetic field

(Jackson, 1967:167). The author's discussion applied the

equation to a charged particle--such as might be found in the

Van Allen belts surrounding the earth--and provided the basis

for the magnetic mirrors discussed in Evans (1985:109). A

schematic of the forces acting on a magnetic dipole in a

uniform and non-uniform magnetic field are shown in Figure 4.
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~(a) (b)

Figure 4. Forces on the Effective Dipole of a Current Loop in
a Uniform (a) and a Non-Uniform (b) Magnetic Field

Geomagnetic Models

A magnetic field in free space is usually given as a

vector potential; however, it can also be represented in

other formats: scalar potentials, orthogonal vectors, Euler

potentials or local expansions of the magnetic field around a

reference point. All of these additional forms, however, can

be converted back to the vector potential format (Stern,

1975:2f).

The geomagnetic field, like any magnetic field, is a

vector field, and magnetic field computations can be based on

the additive properties of vectors (Klumpar, 1982:361).

Ideally, the magnetic field at any given point on the surface

of the earth or at a satellite's orbit could be calculated by

summing up all the contributions from the currents that

10



influence that point. However, since the earth and its near

environment are not a homogeneous mass nor a simple linear

current distribution system, the actual vector field is

complex and can only be approximated. A common method of

approximating a complex function is to use an infinite series

expansion. The series can be expanded as necessary to find

the dominate terms or to reach a required level of precision.

Representations of the geomagnetic field potential are

presented, in most cases, as truncated infinite series. The

International Geomagnetic Reference Field 1975 (IGRF 1975.0)

is used to facilitate comparisons of different models.

Represented by a truncated harmonic series of 80 terms, it

was constructed by averaging the coefficients of several

models.

The simplest representation of the geomagnetic field is

the field created by the first term of the expansion.

Referred to as the axial dipole model, it is the field

created by a dipole whose axis is the earth's rotation axis.

This model can be further simplified by the assumption of a

perfectly circular orbit (i.e. a perfectly spherical earth).

If the expansion is carried out to three terms, the model

now represents the potential of a dipole whose axis is tilted

11.4 degrees to the earth's axis of rotaticn. This is the

oblique or tilted dipole. Further enhancement of the oblique

dipole can account for the center of the earth's dipole and

the earth's center of mass being separated by up to 500

11



kilometers (Evans, 1985:93). Various sources and models give

displacement distances of 300, 342, 467, and 500 kilometers

(Stacy, 1969:129; Alfven, 1963:5; Wertz, 1985:779; Evans,

1985:93). As the radial distance from the earth increases,

the dipole approximation becomes increasingly representative

of the actual field. However, beyond about two and a half

earth radii the dipole nature of the geomagnetic field is

distorted by solar activity and other phenomena (Eller,

1983:317).

Models of magnetic fields based on the mathematics of

spherical harmonics (related to orthogonal vectors) take the

magnetic field at the surface of the earth and expand it

radially (Stern, 1975:6). Again, beyond two or three earth

radii, the solar wind begins to distort the geomagnetic field

and this technique has decreasing utility (Eller, 1983:316f).

Quantitative models of the geomagnetic field tend to fall

into two classes: internal models, where the field is due to

sources inside the earth and is derived from some type of

direct measurements (spherical harmonics and the axial dipole

model); and external models that attempt to explain the

field by adding the effects of currents above the earth's

surface (Mead & Fairfield, 1975:523). As data has become

available, models have been--and probably will continue to

be--made based on actual satellite measurements of these

external currents.
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One external model often referenced, and the first to be

directly based on field measurements, is the Mead-Fairfield

1972 model. This model was derived from a least-squares fit

to 12,616 vector field averages. The measurements were made

by four Explorer satellites between 1966 and 1972. The model

provides four sets of coefficients to account for

"superquiet, quiet, disturbed, and superdisturbed" (Mead &

Fairfield, 1975:526) geomagnetic activity. It is considered

applicable from five to seventeen earth radii (Fairfield &

Mead, 1975:535).

In 1979 a global vector survey of the geomagnetic field

was initiated with the launch of MAGSAT. Its mission was to

measure the main geomagnetic field as well as the variations

caused by crustal anomalies. Due to the sensitivity of the

on-board instrumentation, it was also able to investigate

other external currents such as the equatorial, auroral zone

and polar cap, and high latitude ionosphere and magnetosphere

currents. From these measurements a model was developed to

account for geomagnetic field perturbations due to various

currents in the ionosphere and magnetosphere (Klumpar,

1982:363).

Actual Usages of the Geomagnetic Field

The resultant torque mentioned previously of a magnetic

dipole in a uniform magnetic field is the principle by which

magnetic torques are employed to adjust satellite attitude.

13



In the mid-1960's Harold Perkel conceived of a system to

control transverse momentum components using the interaction

of the geomagnetic field and magnetic torquers on board a

satellite. When a magnetic coil's dipole is aligned parallel

to the spin axis of a satellite, precession control torques

are generated through interaction with the geom~gnetic field.

By switching the sign of the magnetic coil's magnetic moment

at appropriate points in the orbit, the satellite's spin axis

can be precessed in any desired direction (Herman, 1977:5).

The concept was originally used in the TIROS weather

satellite program and later incorporated into the synchronous

RCA communications satellites (Kaplan, 1976:196).

This tendency for a magnetic dipole to align itself with

an external magnetic field is also one of the primary sources

of disturbance torques on satellites (Eller, 1983:316).

Vanguard 1 despun from 2.7 to 0.2 revolutions per second in

two years due to interaction between on-board magnetic fields

and the geomagnetic field (NASA, 1969:2). The Navigation

Demonstration Satellite (NDS-2) built by Rockwell for the

Global Positioning System (GPS) was originally built to dump

momentum with hydrazine thrusters that torque the satellite

in the proper direction. However, "Since 1980 the satellites

of the GPS system have dumped momentum magnetically, thus

avoiding ephemeris disturbance and hydrazine consumption"

(Eller, 1983:316). This represents an example of real fuel

savings through the use of the geomagnetic field energy.

14



I n. . u.i. .

The calculation of net force acting on a magnetic dipole

in a non-uniform magnetic field is representative of the

problem of a satellite and its magnetic field operating in

earth orbit. The simplest representations of the geomagnetic

field are the axial dipole models. These are considered

accurate to about three earth radii. For proof of concept

and order of magnitude calculations in low to medium earth

orbit, a first order spherical harmonic model is a valid

approach. For the purposes of this thesis, therefore, an

axial model will be used since only low to medium orbits will

be considered and the geomagnetic field intensity diminishes

as the cube of the distance away from the earth.
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III. BACKGROUND THEORY

Introduction

This section will introduce and develop the physics and

mathematical equations behind magnetic dipoles and fields and

their interaction. Following this discussion will be a

restatement of the two-body problem and a brief look at

orbital mechanics. The closing section will discuss the

equations for geomagnetic field models that exist and are

pertinent to this thesis.

Maonetostatics

A starting point for this study is an investigation into

the characteristics of magnetic fields. A magnetic field

results from the motion of electrically charged particles

(such as an electric current in a wire as shown in Figure 5)

or the presence of a magnet, and at a given point generates a

sideways deflecting force on another electrically charged

particle that has an arbitrary initial direction and speed

(vector) through that point. Figure 6 shows the curved paths

positive and negative electrons take in the presence of a

magnetic field as a result of the sideways deflecting force.

The most familiar manifestation of a magnetic field is the

torque (twisting or rotating motion) that a small magnet,

such as a compass needle, experiences when placed in such a

16



region. The compass needle will align itself in a north-

south direction in the earth's magnetic field or at right

angles to a current carrying wire.

IB

Figure 5. Magnetic Field Around a Current Carrying Wire
(Reprinted from Halliday and Resnick:561)

Figure 6. Paths of Positive and Negative Electrons Deflected
in Opposite Direction in a Magnetic Field
(Reprinted from Halliday and Resnick:540)
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The torque is proportional to the field intensity and to

the sine of the angle between the axis of the magnet (the

line joining the poles) and the field direction. The

direction is determined by the equilibrium position that the

north pole of a compass needle will reach when placed in the

magnetic field.

Unlike the unit of electrical charge that exists, there is

no known magnetic monopole. The simplest magnetic structure

is the magnetic dipole, characterized by magnetic dipole

moment (p). The simplest representation is the familiar bar

magnet, but magnetic dipoles are also generated by current

loops and solenoids.

A mathematical relationship between the magnetic field

vector and the current i is given by Amperes Law.

f a * dL = poi

where

magnetic field evaluated around a closed path in
space (tesla)

dL = displacement vector around a closed path (meters)
i = current contained within the path of integration

(amperes)
pe = permeability constant

Its usefulness is limited in that the symmetry of the current

distribution must be high enough to permit evaluation of the

integral such as represented by Figure 7a. Even moderately

complex paths can be difficult to integrate (Figure 7b).

18
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ii

(a) (b)

Figure 7. Paths of Integration in a Magnetic Field
(Reprinted from Halliday and Resnick:560)

An example of its application can be found in determining

the magnetic field near a long wire.

B = poi/21tr (2)

4where r is the radial distance from the wire.

To compute j at any point due to an arbitrary current

distribution the Biot-Savart Law states

d8 (pa i/4 )[(dL x 1)/r 3 1] (3a)

or

dB = (poi/4x)[dLsin(e)/r2 ] (3b)

so that

D = fdB (4)

In Figure 8, "P" is a point where dB is the magnetic field

associated with current element dL. The magnitude of dB is
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given by Eq (3b) and z and 0 are the displacement vector and

direction to "P" from dL.

d dLL

00
B

iP

Figure 8. Schematic representation of the Biot-Savart Law
where Current Element dL Establishes a Magnetic
Field Contribution dl at "P"
(Adapted from Halliday and Resnick:569)

Therefore a current distribution such as a current loop,

generates a magnetic field--the same field that a magnetic

dipole aligned perpendicular to the plane of the loop would

generate. Application of the Biot-Savart Law gives the

magnetic field along the axis of a circular current loop to

be

B = P0oiR 2 /2(R2 + x2)3 /2  (5)

where

R = radius of the loop
x = distance from the center of the loop to a point along

the axis as shown in Figure 9
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if x >> R

B = poiR2 /2x 3  (6)

dI

dB ... d

R r

Z P dB

Figure 9. Magnetic Field Along the Axis of a Current Loop
(Reprinted from Halliday and Resnick:570)

Remembering that nR2 is the area 'A' of the current loop

and defining the magnetic dipole (p) as the current in the

loop (i) times the area of the loop (A) times the number of

turns of wire in the loop (N) yields:

B = PoNiA/2wx 3 = pop/2wx3  (7)

Since the geomagnetic field may be approximated by that of

a simple magnetic dipole field, the magnetic field around a

magnetic dipole is of interest. The equations describing a

magnetic dipole field are derived from the magnetic potential

in the vicinity of a magnetic dipole.

Referring to Figure 10, let P be a point within the
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influence of a simple dipole located at the origin, with P's

location described in spherical coordinates (r,8,0).

r, -- .. . . . . P rie ,o )

T r ..

Figure 10. Geometry of Potential Around a Magnetic Dipole

The magnetic moment (p) is given by the separation (y)

between the poles times their pole strength (m i).

P = my (8)

The potential U at P is then:

U = (-m/ri) + (m/r2) (9a)

= -(m)/([r 2+(y/2) 2-rycos(6)]1/}

+(m)/{[r 2 +(y/2) 2 +rycos()]/ 2 } (9b)

If the separation between the poles is much less then the

distance to P, that is y<<r, the potential can be given by:

U = -mycos(O)/r2 = -pcos(G)/r2  (10)

The magnetic field at P is then:

B = -grad U (11)
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Letting A = (W/2)-e be the magnetic latitude, the magnetic

field can be defined in terms of its local horizontal (B

and vertical (Br) components as:

BX= (1/r)(aU/We) (2p/r 3 )(cos(X)/2) (12)

Br= BU/r = 2psin(X)/r 3  (13)

The total field strength is then:

B = (BX2 +Br2 )1/2 = (pIr 3 )[1 + 3sin 2 (X)]l/2  (14)

Now consider the affect magnetic fields have on objects

within their influence. A positive test charge qo moving

with velocity v in the presence of a magnetic field

experiences a force given by:

S= qo v x (15

where

F= force (newtons)
v i velocity of charged particle (meters/second)
qo = charge (coulombs)

= magnetic field (tesla)

The units for R stem from this relationship:

(nt/coul)/(meter/sec) = weber/meter2 = tesla

1 tesla = 1 weber/meter2 = 10000 gauss

If a charged particle is moving through a region in which

both a magnetic field and an electric field exist, the force

experienced is given by the Lorentz relation:

F = qE + qoy x - (16)

The fact that the magnetic force is always at right angles
to the direction of motion means that (for steady magnetic
fields) the work done by this force on the particle is
zero. ... Thus a steady magnetic field cannot change the
kinetic energy of a moving charge; it can only deflect it
sideways. (Halliday & Resnick, 1970:539).
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Therefore it is reasonable to assume that since a magnetic

field exerts a sideways deflecting force on a charged

particle it would likewise exert a sideways force on a

current carrying wire. This force is given by:

F = iL x R (17)

where

= displacement vector pointing in the current
direction (meters)

i = current (amperes)
magnetic field intensity (tesla)

If a current carrying loop is inserted in a uniform

magnetic field it will experience a torque (t) given by:

Sx (18)

with magnitude

t iPBsin(O) (19)

with

p= magnitude of magnetic moment of loop = iA
6 = angle between vectors M and

The torque will act on every turn of a multiply coiled loop

so that

t = NiABsin(e) (20)

where

N = number of coils in the loop
i = current (amperes)
A = area of the loop
o = angle between the magnetic field and the magnetic

dipole moment of the loop
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Two Body Problem

In the two body problem of an earth satellite orbiting

about the much larger mass of the earth, the gravitational

attraction (FS) between the two bodies is given by:

Fg = -GMm/r2  (21)

where

M = mass of the earth (kg)
m = mass of the satellite (kg)
r = distance of satellite from center of the earth (m)
G = gravitational constant (Nt.m/kg

2 )

This is based on the following two assumptions:

1) The earth and satellite are spherically symmetric
so they can be considered as point masses.

2) There are no external nor internal forces acting
on the pair aside from the gravitational force
between them.

If these assumptions are allowed, as well as assuming the

satellite is already in a stable orbit, its orbit is governed

by the following equations of motion:

= -G(M+m).r/r 3  (22)

Since, in our system M>>m , it is convenient to say G(M+m)

GM and define GM = k, then

Y + kr/r3 = 0 (23)

A satellite's position can, in the appropriate coordinate

system be defined by a vector r and its velocity by the

vector v. The moment of momentum (angular momentum per unit

mass) vector (h) is defined by h =  x v and for a given

orbit is constant.
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Following the derivation in Thomson and defining u = /r

the differential equation for the orbit becomes

d2 u/d02 + u = k/h2  (24)

This is a second order differential equation requiring two

arbitrary constants in the general solution.

u = k/h 2 + C cos(O - Oo) (25)

With the kinetic energy per unit mass given by v2 /2 and the

potential energy per unit mass by -k/r the total energy per

unit mass (E) is:

E = (v2 /2) - (k/r) (26)

or

E = -k/2a (27)

where

a = the semi-major axis of a conic section

Choosing Oo = 0 in Eq (25), the solution to the orbit equation

can be written

u = k/h 2 (1 + e cos(G)] (28)

where e is the eccentricity for any conic orbit and is given

by:

e = (1 + 2Eh2 /k2 )1/2  (29)

Using the above defined characteristics any orbit can be

fully described in terms of shape, size and orientation by

five independent quantities referred to as "orbital

elements".
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These are:

1) e = eccentricity
2) a = semi-major axis
3) i = inclination
4) T = longitude of ascending node
5) w = argument of periapsis

If the satellite position must be pinpointed at a particular

time a sixth element is also needed.

6) T = time of periapsis passage

Other elements are sometimes used such as the semi-latus

rectum (p) which is derived from the semi-major axis and the

eccentricity, or the longitude of periapsis which is the

longitude of the ascending node plus the argument of

periapsis. These relationships are shown graphically in

Figure 11.

The preceding discussion is dependent upon the two

assumptions previously mentioned. To account for the

perturbing effects of other masses (sun, moon, planets, etc.

a series of terms must be added to Eq (23) so that we have:

j+(kr/r3)+Enjx3 Gmj[(.J2/rJz 3 )-(tJ1/rji1 3 )] = 0 (30)

The external accelerations caused by these other masses

are small relative to the acceleration by the earth's

gravitational field (Bate and others, 1971:11) and for this

thesis will be ignored. Other interactions, not considered

Keplerian, include perturbations due to the nonspherical

earth, atmospheric drag, solar radiation forces, solar wind,

eddy currents in the satellite, electromagnetic induction,

cosmic dust etc. The interaction of a controlled, internal
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current with the earth's magnetic field is the specific

perturbation to a satellite's orbit to be considered in this

thesis. The variation in the elements that define the orbit

over time will be determined based solely on the magnetic

field interaction.

Techniques to account for these perturbations include

Variations of Parameters or Elements, Cowells Method, and

Encke's Method. This thesis will use the Variation of

Parameters or Elements as discussed in Bate (1971:396) to

outline the procedures to determine the effects of the

magnetic field interaction on a satellite's orbital elements.
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vernal' position

Figure 11. Orbital Elements

(Reprinted from Bate and others:59)
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Geomagnetic Field Models

The exact cause of the earth's magnetic field is not

known. It is believed to be a result of currents within the

earth's core or mantle; the effect of currents located above

the surface such as in the ionosphere, or a combination

thereof. Gilbert proposed that the earth was a great

spherical lodestone. This was discounted due to the lack of

lodestone located near the surface. Later Gauss introduced

the spherical harmonic expansion of a scalar potential

analysis that fit the measurable portions of the geomagnetic

field.

Since the field rotates with the earth it is reasonable to

assume that most of the field originates from some internal

phenomena such as magnetization or a dynamo effect. A field

internal to the earth can be described by a solution to a

boundary value problem. There are no surface currents on the

earth so curl D = 0 (note: Klumpar (1982:361) points out

there are external sources, and Mead & Fairfield conclude

that curl a 0 0 --though by a very small quantity, but

Stern (1975:7) points out that internal sources account for

99i of the field]. This lets the field be expressed as the

gradient of a scalar potential B = -grad U . Basic

electromagnetic theory says that with no known magnetic

monopole, we also have div D = 0 . Combining the last two

equations yields Laplace's equation:

curl grad U = 0 (31)
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The solutions of this equation are well known and can be

expressed in terms of functions known as spherical harmonics

which are given in units of geocentric coordinates as-
U(R,6,O)=an (a/r)" 1 1 2 [gncos(m-*)+ha"sin(m0) ]Pan (e) (32)

n=1 m=0
where

a = equatorial radius
gmn, hln = Gaussian coefficients (determined

empirically by least squares fit of
measured values)

(R,O,$) = geocentric distance, coelevation, east longitude
from Greenwich which defines a point in space

Pnn(O) = associated Legendre functions

When n=1 the expansion yields a simple dipole, with n=2

the expansion represents a quadrupole, etc. Surface

indications such as the Brazilian anomaly (Wertz, 1985:115)

indicate the dipole is offset from the earth's center by

approximately 474 kilometers (Chapman and Bartels, 1940:12).

Therefore the eccentric nature of the dipole is accounted for

by the quadrupole expansion. With n=3 the field is that

given by an octopole. The IGRF model is a result of n=m=8.

The components of the field are given by the respective

partial derivatives.

Various analytical attempts have been made to calculate

the coefficients but with little success. Field measurements

have yielded coefficients empirically through least squares

fits. While accurate for the data from which they were

calculated, the earth's magnetic pole strength and

orientation are subject to secular drift. Consequently the

accuracy of the models degrades over time.
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Since the dipole field decreases as 1/R3 and the

quadrupole decreases by 1/R4 and higher multipoles decrease

even more rapidly, expansions to fewer terms are justified

for some calculations. Wertz (1985:119) shows the effects of

field truncation and angular errors. As altitude increases

the appearance of the geomagnetic field more and more closely

resembles that of a magnetic dipole. This thesis is a

conceptual analysis attempting to quantify the net force

available through the interaction of a satellite magnetic

dipole and the geomagnetic field. Instantaneous precise

forces are not germane and would only be as accurate as the

currency of the coefficients used and will therefore not be

attempted. The geomagnetic field will be approximated by an

axial dipole model.
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IV. DEVELOPMENT

The force that the geomagnetic field exerts on a large

orbiting current loop will vary depending on the current the

loop is carrying, its radius, and position and orientation

relative to the geomagnetic field. A central assumption of

this thesis is that the current loop can be maintained in any

desired orientation relative to the earth and the geomagnetic

field throughout its orbit.

Four orientations will be discussed and analyzed. Case I

will align the satellite's magnetic dipole parallel to the

radial component of the geomagnetic field, so that the plane

of the current loop is parallel to the earth's surface. Case

II will look at the force as a result of an alignment of the

current loop's dipole with the theta component of the

geomagnetic field, so that the current loop is always

perpendicular to the earth's surface. Case III will

investigate the force as a result of alignment of the current

loop's dipole with the instantaneous geomagnetic field at

each point in the satellite's orbit. In Case IV the

satellite will maintain a constant inertial orientation.

This fourth orientation can be generalized to any arbitrary

orientation. Figure 12 shows the four cases and their

orientation with respect to the earth, each other and the

components of the geomagnetic field.
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Figure 12. Four Orientations of the Current Loop Relative to

the Earth and Each Other
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Method Used In Derivation

The equations representing the force on the current loop

will now be derived as functions of the radial distance from

the center of the earth and the co-latitude position. While

the geomagnetic field is strongest and a greater gradient

exists near the poles, the net effective force is not

necessarily greatest at the poles. However, since the force

will act in the theta or radial direction the interactive

force is most advantageously applied to a satellite in a

polar orbit.

The force on each section of the current loop is due to

the interaction between the current displacement vector for

that section and the geomagnetic field vector acting on that

section. The direction of the force is perpendicular to both

the current vector and geomagnetic field. This implies that

the radially directed component of the force (FR) is a result

of the theta component of the geomagnetic field (BT).

Likewise, the force component in the theta direction (FT) is

due to the radial component of the geomagnetic field (BR).

The force in the phi (longitude) direction (FP) will be shown

to be zero.

It is the force on the loop itself that is of interest,

but the position of the loop will be defined by the location

of its center only, that is, a radial distance (Ro) and co-

latitude theta (6o). The geomagnetic field does not change

with the longitude, therefore the longitudinal position of
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the center (0o) does not need to be considered in this

derivation since it does not contribute to the solution. The

position of the center of the loop (Ro,eo,o) will be referred

to by position vector So. The magnetic field interacting

with the loop at location R is the magnetic field at the

radius, r, from the center of the loop. This is given by the

gradient of the magnetic field at the center of the loop

dotted into the distance (r), given by Eq (34) below, to the

current carrying wire.

The equation for the magnetic field of interest at a point

(R,e,0) can be expressed as:

B(R,eo) = B(Ro,8o,Oo) + (del B)'r (33)

where

= (R-Ro)R + (0-Oo)e + (0-00 )D (34)

also

B(R,0,0) = Ba(R,e,O)R + BT(R,0,0)8 + BP(R,e,0)0 (35)

Expanding each scalar component:

Ba (R,6,0)=B. (R0 ,eo ,00)+BBR/bRl0 R+BBR/b810Ae+BBR/bOlo0 (36)

BT(R,0, )=BT (R0, 0,o ) +BT/ o0R+ BB/BO o &+BBT/B00& (37)

B, (R,0, )=BP (Ro ,o ,to ) +2BP,/oR oR+ BP,/O Io,&O+ B /BOo.&O (38)

where AR = R-Ro and Ao = O-0o.

However BP = 0, which eliminates those four terms from

consideration. Also Bn and BT do not contain a phi term

which eliminates two additional terms. Finally the terms for

the field at the center of the loop will integrate to a zero
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net force--since they represent the loop in a uniform

magnetic field--and need not be considered.

The remaining radial and theta components of the magnetic

field and their partial derivatives are expressed and

evaluated as follows:

bBa/BR = B/bR[-2(Re/R)3 g0 cos(O)] 6Re3 gOCos(6))/R4 (39)

Ia/O= B/Be[-2(Re/R)3gOCos(e)] = 2(Re/R)3 gOsin(O) (40)

BBT/OR = B/BR(-(Re/R)3 g~sin(O)] = 3Re 3 g~sin(O)/R4 (41)

6B/e= b/bOI-(Re/R)3g~sin(O)] = -(Re/R)3 gOcos(e)) (42)

where

Re = earth's radius
R = orbit radius
g= first Gaussian coefficient

e = colatitude

The evaluation of the gradient still requires the

determination of AR and AO. From Figures 13-16 these can be

seen to be ±rsin(g)sin(defined orientation angle) and

±(r/R)sin(O)cos(defined orientation angle) respectively. In

addition dL can be seen to be rdQ.
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CASE I

dL - dL[OR -cos(I)e -ifl0 1

rsin(A) Me AOe: eu-r/R)sin(II)
91 &R a.0

Figure 13. Case I: Current Loop and
Orientation Relative to the
Geomagnetic Field and Definitions
of dL,, AR and AO.

CASE II

da dL~cos(fl)P +08. -sin(0)0

AR - rsin(II)
Q Aem o

Figure 14. Case II: Current Loop and
Orientation Relative to the
Geomagnetic Field and Definitions
of dL, AR and AO.
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CASE I[I dL *dL~co&IO)sln(P)R *os(O)Cas(D)e -81nWB)o I

/ AR - reini9aiftI9)

,t r r
I AS .(-r/Rigtn(0)coa(P)~

Figure 15. Case III: Current Loop and Orientation Relative
to the Geomagnetic Field and Definitions of dL,
AR and AO.

CASE IV 4LU mdL(coeWn)costr)R -coasunmre -Sin(O)o I

AR - -rsin(g)*tn(G)

R rr

Ir

aB .(-r/R)sin(9)cosaBr

Figure 16. Case IV: Current Loop and Orientation Relative
to the Geomagnetic Field and Definitions for d.1,
,6R, and Ae.
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Case I: Loop Parallel to Earth's Surface

When the current loop is aligned with its dipole parallel

to the radial component of the geomagnetic field, the current

loop's orientation is approximately parallel to the earth's

surface. The periphery of the loop is assumed to be at the

same distance as the center of the loop from the center of

the earth. At a point exactly over the geomagnetic pole the

radial component of the geomagnetic field yields a force that

is directed radially with respect to the current loop and is

therefore self-cancelling. Also, exactly over the magnetic

pole the BT component is zero. At equal, small distances

away in all directions parallel to the geomagnetic equatorial

plane the magnitude of BT is small and equal at all points on

the loop. The BT component of the geomagnetic fields

provides a force in the positive or negative radial direction

(depending on the direction of current flow) with respect to

the center of the earth. The BT component at a location

exactly centered over the pole therefore provides a net

effective force of 2nriBT acting on the satellite. As the

satellite moves away from the pole the net effective force

will have contributions from both components of the

geomagnetic field.

The following derivation of the components of the force on

the current loop makes the assumption that for each dL of the

current loop the component of the geomagnetic field is

parallel but of 1'Shtly different magnitude. Exactly over

40



the pole and for distances close to the pole this is not

precisely correct. However, the convergence of components of

B at the extreme points of the loop (1000 meter radius

current loop in a 600 kilometer orbit) is less than 0.5

degrees at one degree from the pole and less than 5 degrees

when 0.1 degree from the pole. Figures 12 and 13 define the

components of the geomagnetic field, orientation of the

current loop and axes of the coordinate systems for the

current loop and the geomagnetic field.

The force on each infinitesimal of the current loop is

dF = idL x R (43)

The vector dL can take one of two forms depending on the

direction of current flow in the loop. For purposes of this

derivation the current will be considered in a clockwise

direction when the satellite is viewed from the earth's

center.

The infinitesimal force expressed in determinent form is then

d= i dL R
0 -cos(Q) -sin(Q)
BR BT 0

Therefore,

dE = idL[BTsin(O)R - B, sin(Q)O + BRcos()]" (44)

Each component of the force is given by the respective

component in the preceding equation. The force in the radial

direction (Fa) is given by:

F& =jdFItR = firsin({)dUBT (45)
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Substituting Eq (37) for BT, and noting from Figure 13 that

AR = 0 (46)

and

AO = -(r/R)sin(Q) (47)

the integral becomes:

fir[-(Re/R)3gOCoS(6))](-r/R)sin(Q2)sin(2)dQ (48)

R and 0 define the location of the loop and i, r, g0 , and Re

are constants. Consolidating and pulling the constants out

of the integral yields:

ir2Re3gOoS(G)/R4 fsinz (1)dQ2 (49)

When the integral is evaluated around the loop (2n) the force

in the radial direction is:

Fitr = irrZRe3 gOcos(9)/R 4  (50)

The force in the theta direction (FT) is given by:

FT fjdFT 0 = f- irsin(Q)dQBR (51)

Substituting Eq (36) for BR and recalling Eq (46) and (47)

the integral becomes:

fir2(Re/R)3gOsin(6)(-r/R)sin(Cflsin(Q)dQ (52)

Pulling the constants out of the integral yields:

2ir2ResgOsin(O)/R4 fsin2 (Q2)dS2 (53)

When evaluated around the loop the force in the theta

direction is:

FTI= 2(iitr 2 g 0Re 3 /R 4 )sin(e) (54)
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The force in phi direction (FP) should be zero and the

following evaluation confirms this. The force is represented

by:

F, =fdFP = fircos(Q)dQBR (55)

Substituting Eq (36) for BR and recalling Eq (46) and (47)

the integral becomes:

fir2(Re/R)3gOsinlO)(-r/R)cos(Q)sin(2)dg (56)

Consolidating terms and pulling constants to the left of the

integral yields:

-(2ir2gORe 3 /R4 )sin(O)fcos(Q)sin(Q)dQ (57)

The integral, when evaluated around the loop (2n) yields zero,

leaving a zero force in the phi direction.

The total force is then:

FI = (FRI 2 +FTI 2 )1/ 2 = ir2g°ORe3/R4[l+3sin2)]1/2 j(58)

The direction of the force is dependent on the direction

of the current flow. When the current is clockwise as seen

from the center of the earth, then the radial, theta, and

total forces vary with co-latitude as shown in Figure 17.

The magnitudes are representative of a current loop carrying

10 amps and a radius of 1000 meters.
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Figure 17. Magnetic.Forces for Case 1 (600 Kilometer Orbit)
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Case II: Loop Perpendicular to Earth's Surface

With the current loop aligned with its dipole parallel to

the theta component of the geomagnetic field (BT), the

current loop will maintain an orientation perpendicular to

the earth's surface as shown in Figure 12. Directly over the

pole (BT = 0) the net force can be directed entirely in the

direction of orbital motion by proper selection of the

direction of current flow. As the satellite moves away from

the pole, components of force are added in the radial

direction. Again, for the following derivation, the

assumption is made that the Ba or BT components at the

extremities of the current loop are parallel. Figures. 12 and

14 define for Case II the components of the geomagnetic

field, orientation of the current loop, and axes of the

coordinate systems for the current loop and the geomagnetic

field.

The force on the current loop is again given by Eq (43).

However, since the loop now lies in the R-O plane, dL is given

by dL[cos(Q)R Oe -sin(9)$]. Expanding the cross product, the

infinitesimal force is

dF = i dL [BTsin(Q)R - Bisin(Q)0 + BTcos(O)O] (59)

The procedure for determining the force in the radial and

theta directions is the same as shown in Case I.
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Substituting Eq (37) for BT and noting from Figure 14 that

AO = 0 (60)

and

AR = rsin(Q) (61)

the force in the radial direction is:

Fai = (iwr2 g°Re3 /R4 )3sin(8) (62)

Which is zero over the pole (8 = 0) and a maximum at the

equator as expected.

Substituting Eq (36) for BR and recalling Eq (60) and (61)

the force in the theta direction is:

FTII = -6cos(O)(inr2 gRe3 /R4) (63)

The force in the phi direction is again zero because the

integral ultimately contains the sin(2)cos(Q) term.

The total force acting on this orientation is then

Fx = (Ft2+FTZ)1/2 = 3inr 2 gORe3 /R 4 [1+3cos 2 (l]1/ 2 1(64)

Figure 18 shows the forces for Case II as they vary with co-

latitude. The magnitudes are again representative of a

current loop carrying 10 amps with a 1000 meter radius.
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Figure 18. Magnetic Forces for Case 11 (600 Kilometer Orbit)
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Case III: Loop Dipole Parallel to Geomagnetic Field Vector

For this third case the current loop is constantly

changing its orientation with respect to the earth's surface

so as to maintain a constant orientation relative to the

instantaneous geomagnetic field vector. The added complexity

of this case is offset by the merit this orientation has in

minimizing the torque experienced by the current loop. As

can be seen in Figure 12 the satellite will make two complete

rotations about its center of mass for each orbit about the

earth. Identical to Case I when directly over the pole, it

becomes Case II when at the equator.

The determination of the force again assumes that the

component of the geomagnetic field affecting each section of

the loop is parallel for every section of the loop. The

angle beta (1) defines the orientation of the loop at any

given point in its orbit and, as can be seen in Figure 12 and

15, is the angle between the current loop's magnetic dipole

(or instantaneous geomagnetic field vector) and the radius

vector to the current loop from the center of the earth.

The force on the loop is again given by Eq (43) and the

expansion of the cross product is:

d= i dL{BTsin(Q)R - Bisin(Q)e

+ [BTcos(S)sin(J3) + Bacos(Q)cos(3)]1 (65)

The force in the radial direction is given by Eq (45)

Fa = fdF3R = firsin(U)dUBT (45)
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Substituting Eq (37) for BT and noting from Figure 15 that

AR = rsin(O)sin(13) (66)

and

Ae=-(r/R)sin(U)cos(O) (67)

the integral becomes:

fi rsin(2)d12{3(Re3/R4 )g
0 sin(e)[rsin(2)sin(13)]

- (Re/R)3 gOCoS(e)(-r/R)sin(O)cos(18)) (68)

Forming two integrals, consolidating terms and pulling the

constants out of the integrand yields:

3sin(6)sin(13)(ir2gORe3/R4)fs in2UQ)dQ

+ cos(e)cos(D)(ir2gORe3/R4)fs in2(Q)dQ (69)

Evaluating the integrals around the current loop yields a

force in the radial direction of

Fiti =( ir 2 g0 Re 3 /R 4 )[3sin(O)sinU3)+cos(O)cos(3)I ( 70)

Which gives the same results as Case I over th e pole and Case

II over the equator.

The force in the theta direction is again given by Eq

FT =fdFT*'O 4-irsin(Q)dQBR (51)

Substituting Eq (36) for Ba and recalling Eq (66) and (67)

the integral becomes:

firsin(iO)d2{6(Re3/R4 )gOcos(6)[rsin(Q)sin(3) I

+2(Re/R)3g0 sin(e)( (-r/R)sin(2)cos(3) II (71)
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Forming two integrals, consolidating terms and pulling the

constants outside the integrals yields:

-6cos(O)sin(A)(ir2gORe3/R4)fsin2(2)dQ

+2sin(6)cosu3)(ir2gORe3/R4)fsinz(Q)dQ (721

Evaluating the integrals around the current loop gives the

force in the theta direction as

FTxx=2(ir 2 g°Re3 /R4 )[sin(6)cos(13)-3cos(O)sin(13)] (73)

Which again gives the same result as Case I over the pole and

Case II over the equator.

The force in the phi (0) direction again equals zero

because each integral contains a sin(Q)cos(Q) term. The total

force is given by

Fii= (Faii, 2 + FT1rx 2 )1/2 (74)

The radial, theta, and total force for Case III are shown

in Figure 19 for the same representative current loop as in

Case I.
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Case IV: An Inertially Oriented Current Loop

In this situation the plane of the loop is maintained

parallel to some inertial orientation. As long as the

orientation can be defined in terms of the radial and theta

components of the geomagnetic field lines, a solution can be

found. For the purposes of illustration for this thesis, the

orientation will be maintained parallel to the equatorial

geomagnetic plane. Gamma (r ) is the angle between the plane

of the loop and the radial direction and will be used to

define the orientation as shown in Figure 12. When over the

pole the orientation is the same as Case I. At the equator

it resembles Case II or III but with the current flowing in

the opposite direction.

The force is again given by Eq (43). Gamma is 90 degrees

over the pole and zero at the equator. Therefore r = 90-e so:

cos(r) = cos(9O-e) = sin(e) (75)

sin(r) = sin(90-e) = cos(e) (76)

The expansion of the cross product matrix can therefore be

expressed
~A

dE = idL{B~sin(1)R-Basin(Q)0

+[-BTcos(i)sin(e)+BRcos(Q)cos(e ) Z} (77)

The force in the radial direction is given by Eq (45)

FR = fdFR = firsin(Q)dQ BT (45)
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Substituting Eq (37) for BT and noting from Figure 16 that

AR = -rsin(a)cos(r)

= -rsin(g)cos(90-6)

= -rsin(Q)sin(O) (78)

and

Ae = (-r/R)sin(U)sin(r)

= (-r/R)sin(U)sin(90-e)

= (-r/R)sin(O)cos(6) (79)

the integral becomes:

Fa irsin(Q)dQ{3(Re3 /R4 )g~sin(O)[-rsin(O2)sin(6)I

+(-Re/R) 3 gOcos(e)[(-r/R)sin(2)cos(O)]1 (80)

Resolving into two integrals, combining terms and pulling

constants out of the integrand yields:

Fi = -3sin2(6)(ir2gORe3/R4)fsin2 (a)dU

+ cos2 (0)(irzgORe3/R4 )fsin2(Q)dQ (81)

Evaluating the integral around the current loop yields the

force in the radial direction as

FaRv = (iir 2 gORe 3 /R 4 )[cos 2 (0)-3sin2 (8)] (82)

The force in the theta direction is given by Eq (51):

FT = fdFTe = f-irsin(Q)dQBa (51)

Substituting Eq (36) for Ba and recalling Eq (78) and (79)

the integral expands to

FT = f-irsin(Q)dg{6(Re3/R4 )g~cos(6)[-rsin( O)sin(6)]

+2(Re/R)3 gOsin(e)[ (r/R)sin(g)cos(O)1) (83)

53



Resolving into two integrals, combining terms, and pulling

constants out of the integrand yields:

FT = 6cos(e)sin(e)ir~gORe3/R4fsin2(Q)dg

+ 2sin(e)cos(e)ir2g0Re3/R4fsin2(Q)dg (84)

Evaluating the integral around the loop gives the force in

the theta direction

FTv = 8cos(e)sin(e)(inr2 gORe3 /R4 ) (85)

The force in the phi (40) direction is zero due to a sin()cos(Q)

term in the integrand. The radial, theta and total forces

are shown in Figure 20 for Case IV. The magnitude is again

representative of a 1000 meter radius current loop carrying

10 amps.
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V. APPLICATION

The force alone tells little about the effect the current

loop and geomagnetic field interaction have on a satellite.

The force this technique can apply to a space system must be

compared to other space propulsion systems.

Various characteristics are used to compare thruster

performance. The generally recognized measures are: specific

impulse (Isp) - an overall performance comparison standard,

characteristic exhaust velocity (c*) - a measure of

propellant combination and combustion chamber design, and

thrust coefficient (Cr) - a measure of nozzle performance

(Sutton, 1986:50,.55). Since action-at-a-distance systems

have no exhaust products and an infinite specific impulse,

these traditional comparisons have little meaning. Some

other comparison must be established. Other possibilities

include total impulse (fFdt), power-plant specific mass

(kilograms per kilowatt), or acceleration capability (Sutton,

1986:21, Corliss, 1960:4).

From the standpoint of acceleration capability, the

obvious comparison is with other low-thrust systems such as

ion propulsion, however a comparison with chemical rockets

can be made based on total (lifetime) impulse. Naturally,

comparisons will have to be made for operation in similar

environments - for instance "gravity-free", drag-free space.

Practically speaking it is the acceleration this force can

produce to perturb the satellite that is of interest. The
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acceleration stems from the relationship given by Newtons

second law, that is, F = ma . Therefore, satellite system

mass (i) must be known to assess the acceleration (a)

available from a given force (F).

Some baseline satellite characteristics will be

established. Assuming a satellite operating payload of

approximately 3000 kilograms, the mass of the power supply,

the current loop, the support structure, and the power

conditioner must be added. The current loop mass is a

function of the density of its material and size. Comparing

nine gauge (2.91 millimeter diameter) wire for two common

conductors, copper and aluminum, the following

characteristics are given (CRC, 1973:F137-143): Copper has a

current capacity of 30 amperes, a resistivity of 2.60 ohms

per kilometer (at 20'C), and a mass of 58.98 kilograms per

kilometer. Aluminum has a current capacity of 25 amperes, a

resistivity of 4.26 ohms per kilometer, and a mass of 17.90

kilograms per kilometer. A 1000 meter radius loop of copper

would have a mass of 371 kilograms and the same loop in

aluminum would be 113 kilograms. From the standpoint of cost

to launch, lighter materials are preferable to heavier. The

high currents required in this system require thicker wire to

reduce resistance. The more conductive wire will reduce

ohmic heating, improving efficiency. A measure of merit used

by Prall (1987:38) would be to look for the largest ratio of

conductivity to density. It is apparent that little is lost
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in terms of resistance and current capacity if aluminum wire

is used rather than the heavier copper.

The power generation could be from a nuclear reactor or

solar panels. Assuming solar cells were used, a reasonable

attainable goal for solar panels is 250 watts per square

meter and 20 kilograms per kilowatt (Sutton, 1986:498). To

generate 25 kilowatts of power for the satellite systems and

to drive a current of ten amps in the loop would require 100

square meters of solar cells and 500 kilograms of additional

mass. Since optimal alignment with respect to the sun may

not always be maintained and degradation of the solar cells

will occur over time, doubling this to 200 square meters and

1000 kilograms provides a margin for continuing capability.

A support structure for the current loop, a power

conditioner, and accessories for the satellite could mass

5885 kilograms for a system mass of 10,000 kilograms. Using

representative values of ten amperes for the current (i) and

1000 meters for the current loop radius (r) and the satellite

mass arrived at above, the acceleration capability ranges

from zero to 6x10-4g's and a watts per pound ratio of

approximately one. Point A on Figure 21 compares this system

to other typical values for different types of rocket

engines.

Another comparison can also be made using total impulse.

Total impulse (It) is the thrust force (F) integrated over

the operating time (t); It = fFdt , if the thrust is
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constant and there are no stop and start transients, It = Ft.

From Figure 17-20 an average magnetic interactive force of

two (2) newtons appears reasonable and assuming a twenty year

lifetime, the total impulse is 1.26x109Kg-m/sec.

Ehehical

_aSolar heating_._ -Nuclear fission 0

50 a cr n

- Electrostatic "
.- -- ion rocket -
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10- 1 10-4  10-3  10-2 10- 1 1 10 100
Vehicle acceleration, g's or thrust-to-weight ratio

Figure 21. Operating Regimes of Various Thruster Systems
(Adapted from Sutton:32)

Using approximate values for thrust and burn time for

various chemical rockets from Sutton

(1986:31,196,210,216,263) and electric thrusters from Fearn

(1982:160) total impulse can be calculated and is shown in

Table I.
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Table I. Comparison of Thrust, Burn Time, and Total Impulse
for Various Rocket Engines

Rocket Engine Thrust (Nt) Burn Time (s) Total Impulse
Saturn F-1 7.34E6 165 1.21E9
Saturn J-2 1.02E6 500 5.12E8
Shuttle Main 1.89E6 480 9.07E8
Minuteman 8.90E5 55 4.89E7
Lunar Module 4.63E4 800 3.70E7
General RCS 6.67E1 3600 2.40E5
Shuttle RCS 1.11E2 8.2E4 9.10E6
Kaufman 8 cm 4.90E-3 5.4E7 2.65E5
Kaufman 30 cm 2.10E-1 3.6E7 7.56E6

By this standard of comparison the magnetic field

interaction appears very favorable, however, some of the

comparisons are unrealistic in that the first five listed are

primary propulsion designed to boost a vehicle out of a

gravity well--something magnetic field interaction simply

cannot accomplish. A more appropriate comparison would be to

look at impulse deliverable over one orbit. Given an

initially circular orbit of 600 kilometers, the orbital

period is 5800 seconds. Table II shows impulse delivered in

5800 seconds for several thrusters.

Table II. Impulse Over One Orbit for Various Thrusters

Thruster Thrust (Nt) Total Impulse
Magnetic 2.0 1.16E4
Generic RCS 66.7 3.87E5
Shuttle RCS 111.2 6.44E5
Kaufman 8 cm 0.0049 2.84E1
Kaufman 30 cm 0.210 1.22E3
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Perturbations

An external acceleration, that is, an acceleration other

than the acceleration due to the central gravitational field

that defines the orbit, will cause the parameters that define

the orbit to vary with time. Ideally all disturbing forces

must be determined and the net acceleration vectors

calculated to specify how the orbit will change in the

presence of those forces. Some of these disturbing forces

that act on an orbiting satellite include aerodynamic drag,

solar radiation pressure, earth's oblateness, induced

electromagnetic force, solar wind, cosmic dust etc.

For this analysis, a comparison will be made between the

magnetic force acting on the satellite and aerodynamic drag

and solar radiation pressure. An estimate can be made of the

change in orbital radius by equating the work done by the

force over some portion of the orbit to the change in the

specific mechanical energy of the orbit. In addition,

Appendix A shows how the magnetic force can be applied using

the Variation of Parameters technique to determine how the

orbit can be altered by the magnetic force.

Magnetic Force vs Aerodynamic Drag

Aerodynamic drag forces are tangent to the orbit and

opposite to the velocity. Since atmospheric particle density

is a function of altitude, the aerodynamic drag forces are

most noticeable at satellite perigee. Qualitatively, drag
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effects are similar to an in-plane transfer maneuver applied

at perigee: apogee height will be reduced as well as the

semi-major axis and eccentricity. Perigee height, argument

of perigee and inclination will remain approximately the

same. The latter does not change since the aerodynamic drag

effects are applied in-plane.

If atmospheric rotation is ignored--which is consistent

with assuming a non rotating earth--the speed of the

satellite relative to the atmosphere equals the inertial

velocity. The aerodynamic drag force (Fd) can then be

expressed as

Fd = JCdpv 2A (86)

where

Cd = Drag coefficient
p = Atmospheric density
v = velocity of satellite
A = frontal area of satellite

There are various frontal area configurations that could be

considered to determine the drag coefficient. The solar

panels could face into the direction of motion; the current

loop support structure could be edge on or perpendicular to

the orbit motion etc. The drag coefficient is approximately

one (1) when the mean free path of the atmospheric molecules

is small compared to the size of the satellite and two (2)

when the mean free path is large compared to the size of the

satellite (Roy, 1965:230). NASA SP 8058 gives a conservative

drag coefficient of 2.6 for flat plate shapes. Assuming the

drag coefficient to be a very conservative 3.0, the frontal
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cross sectional area of the satellite system to be a minimum

of 80 square meters and a maximum of 300 square meters, Table

III shows the estimated aerodynamic force from 200 to 1000

kilometers.

Table III. Aerodynamic Drag Force at Various Altitudes

Altitude(Kn) Density(Ka/M3) Velocity(M/s) Force(Nt)80/300M2

200 2.541E-10 7.789E3 1.603/6.0123
400 2.803E-12 7.673E3 1.716E-2/6.436E-2
600 1.137E-13 7.562E3 6.762E-4/2.536E-3
800 1.136E-14 7.456E3 6.568E-5/2.463E-4
1000 3.561E-15 7.354E3 2.003E-5/7.511E-5

Figure 22 shows how the total magnetic force varies with

altitude for Case III. Again magnitudes are representative

of a 1000 meter radius current loop carrying 10 amps. As can

be seen, the magnitudes of the magnetic force are all greater

than the aerodynamic drag at altitudes over 400 kilometers.

91 A I
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Figure 22. Magnitude of Total Magnetic Force for Case III
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Solar Radiation Pressure

Sutton (1986:117) states that the solar radiation pressure

on a given surface of a satellite near the earth's solar

distance is

p = 4.5E-6 cos(O)[(1-ks)cos(O) + 0.67kd] (87)

where

ks= specular coefficient of reflectivity
kd= diffuse coefficient of reflectivity
e = angle between incident vector and surface normal vector

Typical values of 0.9 and 0.5 for ka and kd respectively

for the body of the satellite and 0.25 and 0.01 for the solar

panels are given in Sutton and NASA SP 8027. Using an

approximate satellite body area of 25 square meters and

effective solar array area of 80 to 300 square meters the

solar radiation pressure is 3.214E-4 to 1.0704E-3 newtons.

This force begins to dominates aerodynamic drag forces

between 600 and 800 kilometers as shown in Figure 23.
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Magnetic Thruster Operation

Applying low, continuously applied tangential thrust in

the direction of satellite motion, potential energy rather

than kinetic energy is added to the satellite. The satellite

will progress to a higher, more energetic orbit, although one

with less tangential velocity (Corliss, 1960:38). The work

done by the force is the product of the force and the

distance over which it is applied [FRd6] . This can be added

to the specific mechanical energy of the orbit or equated to

the change in energy of the orbit [d/dR(-p/2R) = p/2R2 1.

Given that the satellite starts out in a circular orbit and a

very low tangential force is applied, the satellite will

follow a spiral trajectory to a higher orbit. The orbit

will, however, continue to approximate a circle. Corliss

gives the increase in orbit radius by the application of a

small tangentially applied force as

dR = 2FRe/gom(R/Re) 3 d0 (88)

where

R = orbital radius (m)
Re= radius of the earth (m)
F = force (Nt)
m = mass of the satellite (kg)
go= acceleration of gravity (m/s2 )
e = angle along the orbit (radians)

Introducing time from Vs = Rde/dt, we have

dt = (Re/go)1/ 2 (R/R*)3 /2 dO (89)
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Combining the two equations then gives

t = gomRe/F(go)' 1 2 [1/(Ro) 1/ 2 - 1/(R) 1 / 2 ] (90)

where

R = initial radius of satellite's orbit (m)
Ro= final radius of satellite's orbit (m)

Corliss shows that a satellite with a thrust to weight

ratio of 10- 4 (initially in a 500 kilometer circular orbit)

can reach escape velocity in 92 days and 400 orbits. This is

the same order of magnitude as the acceleration available due

to the magnetic field interactive force. However, since the

magnetic field strength drops off as the cube of the radius

of the orbit, the applied force also decreases. While escape

velocity cannot be achieved in ninety days, the orbit radius

can be changed by approximately 1000 meters over one half of

an orbit for a ten amp, 1000 meter radius current loop,

starting in a 600 kilometer circular orbit. This orbital

radius change assumes a constant force of two newtons applied

in the tangential direction.

For the four orientations discussed in Chapter IV, the

force varies in magnitude and is not totally applied in a

tangential direction, therefore the orbit will not actually

be a spiral but osculatory as it gains energy. If the

orientation and current direction can be changed at will,

higher average force levels are available. A more precise

determination of the change in the orbital elements requires

an extensive analysis using the variation of parameters. The

appropriate equations are given in Appendix A.
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VI. CONCLUSION

Several models exist to determine the geomagnetic field at

any point around the earth. The simplest of these, and the

one used herein to demonstrate the thesis concept, is the

axial dipole. It was shown that the force acting on the

current loop by the geomagnetic field can be calculated for

any orientation of the current loop in orbit about the earth.

Given the assumptions in Chapter I and the constraints

they represent, a number of conclusions can be drawn. The

first, that a small net force exists on a current loop that

extends over some gradient of the geomagnetic field, was

anticipated, as well as the fact that it would scale

proportionally to the area of the loop and the current the

loop would carry. The fact that the net force would vary to

the extent that it does with position and orientation was not

expected.

As was shown in Table III and Figure 22, the magnetic

force exceeds aerodynamic drag above approximately 300

kilometers. Even as solar radiation pressure begins to

exceed aerodynamic drag above 700 kilometers, it, in turn, is

still less than the magnetic force available for most of an

orbit up to at least 1600 kilometers. The preeminent

conclusion to this thesis, therefore, is that a current loop

can be applied as a space thruster to change the specific

68



energy of a satellite and hence the satellite's orbital

elements.

While several simplifying assumptions were made, they did

not detract from the proof-of-concept. For instance, the

simplification of the earth's magnetic field to a simple

axial dipole was made for ease of analysis, but the method of

analysis would be the same if an octopole or greater

expansion of the infinite series was used. With only the

first term of the geomagnetic field expansion being used

there was no phi component of the magnetic field.

Furthermore, only polar orbits were considered since there

would be no force component in the phi direction, however,

any orbit can be considered. The four orientations

represented a building block approach to the analysis, but

their selection covers all possible orientations and provide

a stepping off point for the inclusion of the effects of

torque on the loop. The non-rotating earth simplification was

made for the sake of atmospheric drag calculations.

Some of the assumptions were made due to a lack of

definitive engineering data and experience in the academic

and engineering worlds. Specifically, the assumption of

rigidity and power requirements and the dynamics of these

structures. For proof of concept, however, these assumptions

are tolerable, though subject to possible debate. The

dynamics of large scale space structures and power generation

in space will be answered in greater detail as the nation
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ventures into the space station era of space exploitation and

exploration.

Recommendations

Should this type of action-at-a-distance thruster actually

be employed, a computer generated solution should carry the

geomagnetic model to an octopole or even include all 80 terms

of the IGRF model with coefficients updated by a follow-on to

MAGSAT. This would be necessary for an accurate

determination of the force the current loop would experience,

as well as account for the changes that the geomagnetic field

undergoes as opposed to a simple axial magnetic dipole.

Since one assumption made was the ability to maintain any

desired orientation throughout the orbit, additional work

should be done to determine the net force as the loop rotated

due to the torque it would experience in the geomagnetic

field. This would probably be oscillatory and approach a

stabilization orientation similar to Case III. Another

useful analysis would be to solve for the orientation that

maintains the greatest force for any given position.

Since the effective use of this type of action-at-a-

distance force depends on the advent of large scale space

structures and large amounts of power, an initial application

could perhaps be considered for an orbiting power generation

satellite.
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Appendix A: Variation of Parameters

Variation of Parameters is a computational method for

calculating orbital elements. In the presence of a small

perturbative force the orbital elements will change slowly with

time. While other methods of calculating changes to an orbit

maintain a constant reference orbit until rectification occurs,

with variation of parameters the orbit changes are calculated

continuously.

The following steps and equations (adapted from Bate and

others, 1971:396-407,72) outline the procedures necessary to

determine the actual change that will take place in a

satellite's orbit when subject to a perturbative force.

1. Set initial conditions at time t = to for position (r)

and velocity (y) in the (I,J,K) reference frame (Figure

11).

2. Calculate the fundamental vectors (h,n,i) at time t to

where

h = the angular momentum (h = r x X)

= the node vector (n = K x h)

g = the eccentricity vector (g = 1/p[(v 2 -p/r)r -

(r.yiv])

3. Calculate the orbital elements at time t = to

where

a = the semi-major axis

e = the eccentricity
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i = the inclination

9 = longitude of ascending node

w = argument of periapsis

These are shown in Figure 11.

4. Compute the perturbative force at time t = to and

transform to the (R,S,W) system. These force components

are given in Eq (50), (54), (62), (63), (70), (73),

(82), and (85).

5. Compute the right hand side of da/dt, de/dt, di/dt,

dQ/dt, dw/dt, dMo/dt (as shown in steps 5-1 through 5-7

below).

6. Numerically integrate each equation from step five one

time increment and step time counter.

7. Add the changes from step six to the old elements from

step three.

8. Calculate the new position and velocity vectors

(r and v) from the new elements.

9. Go to step four until reaching final time step.

Each of the preceding nine steps is expanded in the following

series of steps and substeps:

1. Set initial conditions at t = to

= ri + r: + rxK r = (r, 2 + rj 2 + r2 )I/ 2

A A

vl + vj + vJ v= (vv 2 + V 2 +vx 2 )1 /2
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2. Calculate the three fundamental vectors

2-1. h x x I J K
rx ri rx
I v i VKJ

= (rivi - vjrx)I - (rxvx - vi rK)J + (rlvi - virj )K

=hiI + hiJ + hxK h = (hi 2 + hj2 + hK2 )1/2

2-2. n = k x h =I J K

Jhi hi ix
A

= -hI + hiJ

niI + niJ + nKK n = (n1 2 + nj 2 + nK2 ) 1 /2

2-3. e = 1/p[v 2 - (p/r)]r - (r • *v }
A A

1/p{[v 2 - (p/r)](rzI + rJ + rKK)

-[(rivt + rJvi + rxvK )(vi + vj + vK)}

where p = GM

= elI + ejJ + eKK e = (e1 2 + ej 2 + eK 2 )1 / 2

3. Calculate the orbital elements

3-1. p(semi-latus rectum) = h2/p

3-2. e =Ii

3-3. a = (1-e 2 )/p

3-4. i = arccos hK/h

3-5. o = arccos ni/n (if nj> 0 ,then Q <180")

3-6. w = arccos (n • e)/ne =(nieil + njejJ + nKeKK)/ne

= (-hjeilI + hxeiJ)/ne (if eK>0 ,then w<180")

3-7. v (true anomaly at epoch) = (e • r)/er

(eiri +ejriJ + exriK)/er

(if z-Y>O ,then <180)
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3-8. uo(argument of latitude at epoch) =(ii *)n

= (nirxI + nj riJ + nK rygK) /nr

= (-hjrx + hirj)/nr (if rK>O ,then uo<18O*)

3-9. lo(true longitude at epoch) = 9 + w + V.=2+ uo

4. Calculate the perturbative force

4-1. K = inr 2 gORe3 /R 4 )

4-2. FRi K cos(e) =FR

4-3. MT= K 2sin(e) =Fs

4-4. FR2 = K 3sin(O) FR
4-5. FT2 =-K 6cos(e) =FS

4-6. FR3 =K[3sin(e)sin(3) + cos(O)cos(O)J = FR
4-7. FT3 =KII2sin(O)cos(13) - 6cos(6)sin(13)] = Fs

4-8. FR4 =KI[COs2 (e) - 3sin2 (o)] = FR

4-9. FT4 = K[8cos(e)sin(O)] = Fs

5. Compute the right hand side of the changes in the

orbital elements.

5-1. da/dt = [2esin(v)Fa/n(1-e2 )'1/2  + [2a(I-e 2 )1/zFs/nr)

5-2. de/dt = [(1-e2 )1/2 sin(v)Fit/na]

+ [(-e 2 )I / 2 /na 2 el a2(1-e2 )/rI r} Fs

5-3. di/dt = rFwcos(u)/na2 (1-e2 )'1 2  (=0 since Fw= 0)

5-4. dQ/dt rFwsin(u)/na2 (1-e2) 1 /2 sin~i) (=0 since Fw=O)

5-5a. (dw/dt)R = -(1-e 2 )1/2 COS(v)FR/nae

5-Sb. (dwldt)s = p/eh~sin(p)[1 + 1/[l+ecos(vIlFs

S-Sc. (dw/dt)w = -rcot(i)sin(u)Fw/na2 (i-e2 ) 1/2

5-6. dn/dt = (-3p~/2na4 )da/dt
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5-7. dMo/dt= -1/na{(2r/a) - [(l-e 2 )/elcos(v)}Fu

- [(l-e 2 )/nae]{l + r/[a(l-e 2 )]}sinU')Fs

- t(dn/dt)

6. Numerically integrate each equation in step five above

one time step.

7. Add the changes arrived at in step six to each of the

old elements from step three.

8. Calculate new position and velocity vectors from the new

elements arrived at in step seven. This is most easily

done by calculating r and v in the perifocal coordinate

and transforming back to the geocentric-equatorial

(I,J,K) system.

8-1. r = p/[l+ ecos(v)I

8-2. = rcos(v)P + rsin(V)Q

8-3. v = (j/r)1/ 2 {-sin(V)P + [e + cos(v)IQI

8-4. Transform to (I,J,K)

ai

Let c = cos
a = sin

R = c(Q)c(w)-s(Q)s(w)c(i) -c(Q)s(w)-s(Q)c(w)c( i) s(,Q)s( i)
c(w)s(Q)+c(Q)s(w)c(i) -s(g)s(w)+c(Q)c(w)c( i) -cU2)s( i)
s(w)s(i) c(w)s(i) c(i)

9. Go to step four until reaching final orbit or last time

increment.

The steps are summarized in the following flow chart.
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Figure 24. Variation of Parameters Flow Chart
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Appendix B: Program for Calculating and

Plotting Maonetic Force

The force calculations were made through the use of a

software package called Powerpack., Created as a statistical

applications software it is also capable of performing various

formula calculations and has a simple but useful plotting

routine. The following is the core of the magnetic force

computation program.

*THIS PROGRAM CALCULATES THE GEOMAGNETIC FIELD AS A FUNCTION OF THE RADIAL;
*DISTANCE FROM THE CENTER OF THE EARTH AND COLATITUDE USING A SIMPLE;
*AXIAL DIPOLE MODEL FOR THE MAGNETIC FIELD. THIS PROGRAM THEN CALCULATES;
*THE FORCE ON A CURRENT LOOP IN THE GEOMAGNETIC FIELD. THE CURRENT £ IS;
*ENTERED IN AMPS, THE CURRENT LOOP RADIUS r~ IS ENTERED IN METERS AND THE;
*ALTITUDE h IS ENTERED IN METERS. THERE ARE FOUR ORIENTATIONS TO BE;
*CONSIDERED AND TWO POSSIBLE CURRENT DIRECTIONS;
*-------------------------------------------------------------------------------------------

*THIS FIRST SECTION DETERMINES WHAT VALUES ARE TO BE RETAINED UP TO A;
*MAX OF 10. AND THE INITIAL INPUT PARAMETERS;

RETAIN THETA(DEGREES) .BETAd ,KM,F3;

define Re z 8370800;
define Rh a Re + h
Q----------------------------------------------------------------------------------

*THIS SECTION CALCULATES THE GEOMAGNETIC FIELD AND ITS ORIENTATION;

define Bt a -(a37@66@/Rh)^3*.3I'uin(t);
define BR a -2#(8370000/Rh)^3*.31*cox(t);
define B a (Bt'2 + BR^2).5;
define a a (Bt);
define c z (BR);
define Beta - Ax'oTan(z,c);
*---------------------------------------------------------------------------------

*THIS SECTION CALCULATES THE FORCE FOR THE DIFFERENT ORIENTATIONS;
*------------------------------------------------------------------
define X a (3.14159'p^2'i#.31*Re^3/Rh^4);

'CASE 1: CURRENT LOOP PARALLEL TO EARTHS SURFACE;

define FRi a K'aox(t);
define Ftl a K*2*ain(t);
define F1 a (FRI^2 + Ftl^2)^.5;

'CASE 2: CURRENT LOOP PERPENDICULAR TO EARTHS SURFACE;
0---------------------------------------------------------------------------------

define 712 a K*3*xin(t);
define Ft2 a -K*6'aoe(t);
define 72 a (FR2^2 + Ft2^2)^.S;
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*CASE 3: CURRENT LOOP DIPOLE TANGENTIAL TO GEOMAGNETIC FIELD;
* ---------------------------------------------------------------------------------------

define FR3 =Abu(K*(3*uin(t)xiin(Beta)+co(t)*co(Beta));
define Ft3 uAbs(X*(2*coa(Beta)*sin(t)-6aco(t)'ain(Beta));
define F3 a (FR3^2 + Ft3'2)^.5;
*------------------------------------------------------------------
*CASE 4: CURRENT LOOP MAINTAINING CONSTANT INERTIAL ATTITUDE;
*------------------------------------------------------------------
define F4 a X*(coe(t)*aos(t)-3*uin(t)*ein(t));
define Ft4 a 8eKXoo(t)#min(t);
define F4 a (FR4^2 + Ft4^2)'.5;
*-----------------------------------------------------------------
*REVERSING THE CURRENT DIRECTION;
U---------------------------------------------------------------------------------------

define FR1B a FRI(-1);
define FtIB a File(-1);
define FR2B a FR2*(-I);
define Ft2B z Ft2*(-1);
define FR3B z FR3*(-1);
define Ft3B a (-1)*ABS(2*K*(3*co(t)'uin(Beta)-sin(t)*coa(Beta)));
define FR4B s K*(3'xin(t)*ain(t)-coa(t)*coa(t));
define Ft4B a Ft4*(-l):
define THETA(DEGREES) a (18*t)/3.1415927;
define BETAd a 180 + (180*Beta)/3.1415927;
define KM z h/1009;
LET HSMIN a 0; LET HSMAX a 380;
LET VSMIN z 0; LET VSMAX z 4.5;
LET LEGXMIN a 6; LET LEGYMIN 0.1;
SYMBOL 0 7 30 42 31;
YLABEL - FORCE (NEWTONS);
run;
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